Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays

نویسنده

  • Yuan Ye
چکیده

In this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays        du i (t) dt = u i (t) a i (t) − n l=1 a il (t)u l (t − σ il (t)) − m j=1 b ij (t)v j (t − τ ij (t)) dv j (t) dt = v j (t) − r j (t) + n l=1 d jl (t)u l (t − δ jl (t)) − m h=1 e jh (t)v h (t − θ jh (t))

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two positive almost periodic solutions of harvesting predator-prey model with holling III type functional response and time delays

By means of Mawhin’s continuation theorem of coincidence degree theory, some sufficient conditions are obtained for the existence of at least two positive almost periodic solutions of harvesting predator-prey model with Holling III type functional response and time delays. An example and numerical simulations are employed to illustrate the main result of this paper. Key–Words: Almost periodicit...

متن کامل

Positive Periodic Solutions for an Impulsive Ratio-dependent Predator-prey System with Delays

In this paper, we study a periodic ratio-dependent predator-prey system of two species with impulse and multiple time delays. By means of analysis techniques and the continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive periodic solutions of the system. Our results extend previous results obtained in [9].

متن کامل

The Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model

   Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic.    In the present paper, some predator-prey models in which two ecologically inte...

متن کامل

Existence and Permanence of Almost Periodic Solutions for Leslie-gower Predator-prey Model with Variable Delays

By constructing a suitable Lyapunov functional and using almost periodic functional hull theory, we study the almost periodic dynamic behavior of a discrete Leslie-Gower predator-prey model with constant and variable delays. Based on the permanence result, sufficient conditions are established for the existence and uniqueness of globally attractive almost periodic solution. A example and a nume...

متن کامل

A note on Hopf bifurcations in a delayed diffusive Lotka-Volterra predator-prey system

The diffusive Lotka–Volterra predator–prey system with two delays is reconsidered here. The stability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations, and our results complement earlier ones. We also obtain that in a special case, a Hopf bifurcation of spatial inhomogeneous periodic solutions occurs in the system. © 2011 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012